{标题}
发布时间:{发布时间(yyyy-MM-dd)} 来源: {文章来源}
地址:广州市天河区黄埔大道西601号 暨南大学(邮编:510632)
联系电话:86-12345678 邮箱:123456@jnu.com 管理登录 >
Copyright © 版权所有 暨南大学智能科学与工程学院
学院官方微信公众号
电信物联网— 王迪
2025-04-01
智能科学与工程学院
王迪博士毕业于澳门大学,现任暨南大学智能科学与工程学院讲师,主要研究方向为点云深度学习及其在智能感知中的应用。近年来在《Pattern Recognition》《IEEE Robotics and Automation Letters》《Automation in Construction》等国际顶级期刊上发表多篇论文,涵盖自监督点云理解、三维重建等前沿研究。同时担任《Expert Systems with Applications》《Neural Networks》等多个国际期刊审稿人。
王迪博士每年招收数名硕士生,欢迎对视觉感知方向感兴趣、对科研有热情的学生报读。
澳门大学机电工程Electromechanical Engineering,博士学位,中国澳门(2020.08-2024.08)
香港理工大学电子信息工程(Electronic and Information Engineering),硕士学位,中国香港(2015.08-2016.08)
华南理工大学自动化,学士学位,广州(2011.09-2015.06)
华南理工大学国际经济与贸易,第二学士学位,广州(2011.09-2015.06)
暨南大学智能科学与工程学院,讲师(2024.08至今)
香港理工大学,研究助理,中国香港(2017.12-2018.12)
香港城市大学,研究助理,中国香港(2016.10-2017.11)
机器视觉、点云语义理解、三维重建、多模态数据融合处理
Wang D, Tang L, Wang X, et al. Improving deep learning on point cloud by maximizing mutual information across layers[J]. Pattern Recognition, 2022, 131: 108892.
Wang D, Yang Z X*. Self-supervised point cloud understanding via mask transformer and contrastive learning[J]. IEEE Robotics and Automation Letters, 2022, 8(1): 184-191.
Wang D, Tang L, Zhu L, et al. Mutual information maximization based similarity operation for 3D point cloud completion network[J]. IEEE Signal Processing Letters, 2022, 29: 1217-1221.
Wang D, Chen J, Zhao D, et al. Monitoring workers' attention and vigilance in construction activities through a wireless and wearable electroencephalography system[J]. Automation in construction, 2017, 82: 122-137.
Wang D, Li H, Chen J. Detecting and measuring construction workers' vigilance through hybrid kinematic-EEG signals[J]. Automation in Construction, 2019, 100: 11-23.
Li H, Wang D, Chen J, et al. Pre-service fatigue screening for construction workers through wearable EEG-based signal spectral analysis[J]. Automation in Construction, 2019, 106: 102851.
Wang D, Yang Z X*. InfoPCT: Mutual information maximization based point cloud transformer[C]//2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). IEEE, 2022: 17-21.
Zhang D, Ye Q, Wang D, et al. Real-Time Location-to-Image Generative Adversarial Networks with Sparse Sensor Data[C]//2023 29th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). IEEE, 2023: 1-6.
广东省珠海市前山路206号暨南大学珠海校区行政楼631,519070
E-mail: diwang@jnu.edu.cn